3.3 \(\int \sin (a+b \log (c x^n)) \, dx\)

Optimal. Leaf size=52 \[ \frac{x \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+1}-\frac{b n x \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+1} \]

[Out]

-((b*n*x*Cos[a + b*Log[c*x^n]])/(1 + b^2*n^2)) + (x*Sin[a + b*Log[c*x^n]])/(1 + b^2*n^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0112486, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {4475} \[ \frac{x \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+1}-\frac{b n x \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+1} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*Log[c*x^n]],x]

[Out]

-((b*n*x*Cos[a + b*Log[c*x^n]])/(1 + b^2*n^2)) + (x*Sin[a + b*Log[c*x^n]])/(1 + b^2*n^2)

Rule 4475

Int[Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(x*Sin[d*(a + b*Log[c*x^n])])/(b^2*d^2
*n^2 + 1), x] - Simp[(b*d*n*x*Cos[d*(a + b*Log[c*x^n])])/(b^2*d^2*n^2 + 1), x] /; FreeQ[{a, b, c, d, n}, x] &&
 NeQ[b^2*d^2*n^2 + 1, 0]

Rubi steps

\begin{align*} \int \sin \left (a+b \log \left (c x^n\right )\right ) \, dx &=-\frac{b n x \cos \left (a+b \log \left (c x^n\right )\right )}{1+b^2 n^2}+\frac{x \sin \left (a+b \log \left (c x^n\right )\right )}{1+b^2 n^2}\\ \end{align*}

Mathematica [A]  time = 0.0509788, size = 40, normalized size = 0.77 \[ \frac{x \left (\sin \left (a+b \log \left (c x^n\right )\right )-b n \cos \left (a+b \log \left (c x^n\right )\right )\right )}{b^2 n^2+1} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*Log[c*x^n]],x]

[Out]

(x*(-(b*n*Cos[a + b*Log[c*x^n]]) + Sin[a + b*Log[c*x^n]]))/(1 + b^2*n^2)

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int \sin \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b*ln(c*x^n)),x)

[Out]

int(sin(a+b*ln(c*x^n)),x)

________________________________________________________________________________________

Maxima [B]  time = 1.19993, size = 278, normalized size = 5.35 \begin{align*} -\frac{{\left ({\left (b \cos \left (2 \, b \log \left (c\right )\right ) \cos \left (b \log \left (c\right )\right ) + b \sin \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + b \cos \left (b \log \left (c\right )\right )\right )} n - \cos \left (b \log \left (c\right )\right ) \sin \left (2 \, b \log \left (c\right )\right ) + \cos \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) - \sin \left (b \log \left (c\right )\right )\right )} x \cos \left (b \log \left (x^{n}\right ) + a\right ) -{\left ({\left (b \cos \left (b \log \left (c\right )\right ) \sin \left (2 \, b \log \left (c\right )\right ) - b \cos \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + b \sin \left (b \log \left (c\right )\right )\right )} n + \cos \left (2 \, b \log \left (c\right )\right ) \cos \left (b \log \left (c\right )\right ) + \sin \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + \cos \left (b \log \left (c\right )\right )\right )} x \sin \left (b \log \left (x^{n}\right ) + a\right )}{2 \,{\left ({\left (b^{2} \cos \left (b \log \left (c\right )\right )^{2} + b^{2} \sin \left (b \log \left (c\right )\right )^{2}\right )} n^{2} + \cos \left (b \log \left (c\right )\right )^{2} + \sin \left (b \log \left (c\right )\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n)),x, algorithm="maxima")

[Out]

-1/2*(((b*cos(2*b*log(c))*cos(b*log(c)) + b*sin(2*b*log(c))*sin(b*log(c)) + b*cos(b*log(c)))*n - cos(b*log(c))
*sin(2*b*log(c)) + cos(2*b*log(c))*sin(b*log(c)) - sin(b*log(c)))*x*cos(b*log(x^n) + a) - ((b*cos(b*log(c))*si
n(2*b*log(c)) - b*cos(2*b*log(c))*sin(b*log(c)) + b*sin(b*log(c)))*n + cos(2*b*log(c))*cos(b*log(c)) + sin(2*b
*log(c))*sin(b*log(c)) + cos(b*log(c)))*x*sin(b*log(x^n) + a))/((b^2*cos(b*log(c))^2 + b^2*sin(b*log(c))^2)*n^
2 + cos(b*log(c))^2 + sin(b*log(c))^2)

________________________________________________________________________________________

Fricas [A]  time = 0.488431, size = 122, normalized size = 2.35 \begin{align*} -\frac{b n x \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - x \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{b^{2} n^{2} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n)),x, algorithm="fricas")

[Out]

-(b*n*x*cos(b*n*log(x) + b*log(c) + a) - x*sin(b*n*log(x) + b*log(c) + a))/(b^2*n^2 + 1)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*ln(c*x**n)),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________

Giac [B]  time = 1.19184, size = 1191, normalized size = 22.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*log(c*x^n)),x, algorithm="giac")

[Out]

-1/2*(b*n*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*lo
g(abs(c)))^2*tan(1/2*a)^2 + b*n*x*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n
*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 - b*n*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) -
 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - b*n*x*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*
b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - 4*b*n*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*
n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a) - 4*b*n*x*e^(-1/2*pi*b
*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a) -
 b*n*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a)^2 - b*n*x*e^(-1/2*pi*b*n*sgn
(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*a)^2 + 2*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b
*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a) + 2*x*e^(-1/2*pi*b*n*sgn(x) + 1/
2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a) + 2*x*e^(1/2*
pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*
a)^2 + 2*x*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*lo
g(abs(c)))*tan(1/2*a)^2 + b*n*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b) + b*n*x*e^(-1/
2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b) - 2*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*
sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 2*x*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2
*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 2*x*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n
+ 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a) - 2*x*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b
)*tan(1/2*a))/(b^2*n^2*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 + b^2*n^2*tan(1/2*b*n*log(a
bs(x)) + 1/2*b*log(abs(c)))^2 + b^2*n^2*tan(1/2*a)^2 + b^2*n^2 + tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^
2*tan(1/2*a)^2 + tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 + tan(1/2*a)^2 + 1)